INASA CR-66770"

AN ANALYTICAL BASIS FOR
TIME-MODULATED RANDOM VIBRATION TESTING

BY T. K. HASSELMAN

|TRW REPORT NO. 11282-6001-R0-00 JANUARY 1969

Prepared under Confrécf No. NAS 1-8503
TRW SYSTEMS

Redondo Beac‘zh, California
fo?r

NATIONAL AERONAUTICS AlﬁND SPACE ADMINISTRATION Z




NASA CR-66770

AN ANALYTICAL BASIS FOR
TIME-MODULATED RANDOM VIBRATION TESTING

BY T. K. HASSELMAN

TRW REPORT NO. 11282-6001-R0-00 JANUARY 1969

Prepared under Contract No. NAS 1-8503
TRW SYSTEMS
Redondo Beach, California
for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Prepared by ?é%//Qé@&ﬁwﬁi«aﬁkmw Approved by

T. K. Hasselman,

Member of Technical Staff Dynam1cs Department,
Applied Mechanics =~ Applied Mechanics Laboratory
Laboratory

i
Approved by ; fﬁﬁ @f A Aiwggﬁwwwf
J. H. Walker Assistant Manager
Applied Mechanics Laboratory

TRW

SYSTEMS GROUP



ABSTRACT

This report considers the time dependent rms response of a base
excited single-degree-of-freedom system to time-modulated stationary
random vibration. The'eQCitation is characterized by a
power spectral density function having an arbitrary bandwidth and
center frequency, and by a deterministic modulating function. Closed
form solutions are presented for three modulating functions:

(1) the step function, (2) the rectangular function, and (3) the
decaying exponential function. An approximate solution is ﬁrovided

for arbitrary modulating functions.

A parameter study was made wherein parameters describing system
damping, input to system bandwidth and frequency ratios, and
modulating function were varied‘independently. Dimensionless response
histories were computed and plotted for these cases. From this study
it was concluded that the maximum transient rms response can differ
significantly from what would be predicted by enveloping the transients
with stationary levels and computing stationary response. Practical
examples were suggested in which the difference could be a factor of

two in either direction.
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AN ANALYTICAL BASIS FOR
TIME-MODULATED RANDOM VIBRATION TESTING

I. INTRODUCTION

Many environments observed in nature are characterized by a limited
number of oscillations of a fairly high level. Examples of this class of
environments may be measured within a spacecraft during launch, within a
transporter driving over rough roads or within a building during an earth-
quake. The dynamic structure in question -~ spacecraft, transporter, or
building —- is generally expected to survive a succession of these environments
during its service life. The variety of factors influencing each repetition
of the environment will create a randomness in the parameters describing the
environment, such as frequency content and level.

The design of a laboratory test to adequately simulate these environments
is hampered by the limitations of present test equipment and test philosophy.
Of choices currently available, a sum of modulated sinusoids appears most
appropriate from the standpoint of simulating the desired waveform. Successive
application of such a test, however, to simulate the structure's service life
has one obvious shortcoming. It fails to account for the anticipated random-
ness in the service environment.

Time-modulated or shaped random excitation has been considered for the
gsimulation of some of these environments [1,2,3,4].* Application has been

rather limited however and no attempt has been made to systematically

Numbers in square brackets refer to references at end of the report.



investigate the isolated effects which clearly defined system and input
parameters have on the fundamental characteristics of transient rms response.
Such an investigation is an important prerequisite to further consideration
of this simulation for testing purposes. The primary objective of this
study is therefore to provide an analytical basis for further investigation.
In so doing, emphasis has been placed on a formulation compatible with
present methods of data analysis and laboratory test capabilities.

The analytical procedure discussed herein is based on the transient
rms* response of a linear damped mechanical oscillator to a suddenly applied
stationary process. This problem was considered by Caughey and Stumpf [5]
for a stationary process having an arbitrary power spectrum, but‘only results
for a white process were presented. The notion of response to a suddenly
applied stationary input provides a conceptual tie between statiomary and
nonstationary response in that the transient rms response asymptotically

approaches the stationary value after the initial event.

The next part of the analysis concerns the sum of two such step inputs
of a stationary process to create a rectangular modulation. This concept is
then generalized to include the sum of N step inputs. In this way arbitrary
modulating functions are approximated by staircase functions. Reasonably
good approximations of transient rms response result from rather crude
approximations to the modulating function since response is derived by

integrating over the modulating function.

%

All statistical averages discussed in this report are ensemble
averages rather than time averages since the operations apply
to nonstationary processes.



The analysis is developed in Section II. TIdealizations of both structure
and environment are first discussed. The integral e%pressions for the rms
response are then presented for each of three different modulating functions.
The closed form solutions to these integrals follow. Section IIT contains a
discussion of the parameter study made to investigate the behavior of rms response
for each of the three modulating functions. An approximate method to compute
rms response for arbitrary modulating functions is developed and discussed in
Section IV. A comparison is made with the exact solution derived for the

exponential modulating function.



II. ANALYSIS

1. Idealizations

The stated objectives are best served by postulating suitable idealizations
for the system and its dynamic environment. Many approaches to structural
dynamics analysis rely on the notions of the single-degree-of-freedom system.
Among these are analysis by response spectra and the normal mode method. Because
of its simplicity and fundamental importance, the single-degree-of-freedom
structural model is adopted here. Such a system is specified by its Green's

function or impulse response function

h(t) = u(t) (; e sin wt) ,
where
B8 = L,
w = w0, 1~z , the damped natural frequency
z = fraction of eritical damping
W, = undamped natural frequency
u(t) = %O Pt Os the unit step function.
1: t>90

A suitable idealization is also sought for the input. It is desirable
to optimize the trade-off between simplicity and flexibility. A number of
models for nonstationary processes have been investigated. Among these are
(1) a finite sum of time-modulated harmonics with random phasing [6], (2)
filtered shot mnoise with time dependent intensity functions [1,3,4] and

(3) time-modulated filtered white processes [ 2,3 ]. The relationship between



(2) and (3) has been discussed in Reference [3].

A somewhat different technique suggests itself for the simulation of
transient random vibration environments in the laboratory. éince the random
vibration consoles now used for stationary tests are capable of producing
virtually any power spectral density or p.s.d. shape by summing a number
filtered white noise processes, it is of interest to consider that class of
nonstationary process which can be generated from a stationary process of
arbitrary p.s.d. and mpdulating function. In practice, therefore, one 1is
not restricted to only those p.s.d.'s which correspond to a single filter
output. For the purpose of analysis one is not restricted to the exact
frequency response characteristics of a single common filter if‘a simpler
expression can be found to specify the second order stochastics of a

stationary process.

- *
A stochastic process will be denoted by x(t), after Barnes , to

distinguish it from deterministic functions written without the double bars.

The mean of gkt) is given by
m (t) = E[x(0)] ,
and its autocorrelation function by

R (t;, t,)) = E[x(t;) x(t,)].

If'mx(t) = 0 then Rx(tl?tZ) = Kx(tl’tZ)’ the autocovariance function of

gkt). If gkt) is stationary and ergodic then Rx(tl’tZ) = RX(T) where

*
J. L. Barnes, Professor of Engineering, University of California,
Los Angeles.



T = t2 - tl’ the correlation interval.
A time-modulated process Ekt) may be specified where
2(t) = £(r) x(t).

The modulating function f(t) is deterministic and gkt) is a statiomary

ergodic process with zero mean. The process Ekt) is nonstationary. Then

m () = E[£(8) x(D)] = £(¢) E[x(t)] = £(t) m (t) = O.

Similarly

Ry(tl,tz) = f(tl) f(tz) Rx(t2 - tl).

The stationary autocorrelation function for the response of a second order

filter to white noise excitation is

al| )

R(t) = e (cos pr ~ E-Sin p |t ,
where

T = t2 - tl’ the correlation interval

o = gpo

P = P, /1-¢2

g = fraction of critical damping

P, = undamped filter frequency

Considerable gimplification is achieved by dropping the second term. In fact,
when o << p the second term may be neglected. This is the case of a lightly

damped second order filter. As o/p grows large the importance of the



oscillatory term diminishes and the second order filter tends to look more

like a first order filter.
The stationary autocorrelation function

RX(T) = e ~a 7] cos pTt

describes a non-white process of arbitrary -bandwidth and center frequency.
The Fourier transform of RX(T) yields the corresponding p.s.d. function S(2)

which is

g_ uz +Ap2+~'g22
T a2+ (p-22] [a2+ (pt+R)2?]

S, () =

This functiom has the same basic characteristics as that for

the response of the second order filter to white noise described above.

That is for a << p, the half power point -bandwidth is approximately 2a, and the
bandwidth: and center frequency can be varied independently permitting the
evaluation of a continuous range of individual cases ranging from a pure

sinusoid to pure white noise and any center frequency of interest.

Various modulating functions have also been considered. They include
the step, rectangular and half sine functions which have been applied to
white noise processes [2,5]. An increasing-decreasing exponential function
has been applied to the filtered white noise process [ 3]. The latter was
adopted for earthquake simulation problems where o was of the same order as

p and where the modulating function varried rather slowly in time.



Three modulating functions f(t) are considered in this section,

f(t) = u(L) . 4 4«he step function

f(t) = u(t) -u (t-to)ﬂ the rectangular function
-\t .

£(t) = u(t)e ; the decaying exponential

2. The Variance of Structural Response

The equation of motion for the displacement response z(t) of:-a base

excited single~degree-of-freedom system with viscous damping is

5(t) + 28 2(t) + mi 2(t) = —y(t)

where y(t) denotes base acceleration. The solution of the equation for z(t)

given zero initial conditions is

[+¢]

z(t) = —f h{t-1) y(r) dt

=00

where T is used here as a dummy variable and does not denote correlation

interval. The autocorrelation function of the response is given by

Rz'(tl’tZ_) = '[m [ h(tl—;rl) h(tz-’rz) f("l.'l) ;;f('l."z) »RX(’TZ-‘TI) d'r'ldeﬁ-» - ()

ve]

The variance of response is obtained by setting tl =t, =t and then

evaluating the integral. These integrals and their solutions are presented



for the three modulating functions. The results of the integrations are in
dimensionless form where the following constants and functions are defined to

simplify the notation:

B-0. 2
a = = Ay = 3 +p
_ Bta 2
b = ——-w .’.—\12 =.a +p2
2 2
b= 5P by = P F g
W~ 2 2
Pt o fop = P By
— 2 1(P1 Pz) a (1 1 ) - —
A = - = + + — _D. -D
ab) %+ 4 |2 \P11 212 2(a+b) \Ay;  Agy 37 74
_ a 1 1
= - +
’ 2 (atb) (Au A12)




o

=)

2\‘

)

o

11

12

13

1/ p P p, b
2
A1 201 Ayg Byp
1fp b p, b
7 [~
A11 Ay Ao B9
2
if » P; P,
2
A1y Ay Ao Ay
2
1 pypy P,
2
A11 299 A1y Ay
ab - plz
281899
ab + PlPZ
287 Ay
apl -+ plb
28,7 By

10

a py apy
A1g Ay Ay Ay
ap a.p
Iy i +t 3 A2
12 292 11 422
ab + ab
B2 A1 At/

ab _ ab
Ay Ay A1 Ay
= ] ab + P2pl
21 2K A
2
E22 = 2;32__
2899 B9y
E,, = 2P1” PP
2819 Ayy



14

31

i

32

33

k=

34

apz - Plb

2All 22

plb + ap1

2891 Ay

pib - apy

2841 Ay

2 _ab

2891 By1

P4P, + ab

2All A22

B(t)

¢, (®)
G, (t)
D, (t)
D, (t)

D3(t)

24

41

52

42

43

44

o ~{at+b)wt

e ~(atb)ut sin 2pt

e - (atb)ut cos 2wt

~-but . .
e sin py wt

-bwt

e sin P, wt

-but
e cos p1 wt

11

ap2 4 p2b

2805 Ay,

Pob - bpy

2819 By



Dé(t) = e--bwt cos p, wt

El(t) - gaut sin py ot

Ez(t) = e—awt sin Py wt

E3(t) = e—awt cos py wt

E4(t) = e_amt cos p, wt
a. The Step Function: £(t) = u(t)

The variance of response to a step modulated input is derived

from the autocorrelation function as follows:

Rz(tl’ tz)

j:m —/_m h(t;-1,) h(t,~1,) ulry) ulry) R (1,-1y) dt; dt,

f_w f h(vl) h(v2) u(tl-vl) u(tz—vz) Rx {(tz—vz)—(tl—vl)] dvldv2

00

and v, = t, - T, has been

where the change of variables vy = ty - Ty 2 2 5

made. Upon letting tl = t2 = t,

12



t t
2 _
o, (¢) = R (t,t) = / [ h(vy) h(vy) R (v, = v,) dv; dv,.

o] 0

In dimensionless form the solution is

2 4
o ozz(t) = A+ 3B B(t) + 2::1 En c_(t) + nz=:l DD _(t) (2)

b. The Rectangular Function: £(t) = u(t) - u(t-ty)

It is useful to approach the derivation of ozz(t) for this
modulating function from a somewhat more general point of view. In
so doing, two processes are considered, one applied to the system at
t = El and the other at t = Ez. The cross correlation of response for

%
> ; - -
t El’ t > 52 will be denoted by Rz (t1 El’ t2 gz) where

*
Rz(tl—él, tz—i )

2

=f [ h(tl—rl) h(tZ_TZ) u(Tl-—gl) u(TZ-—EZ) RX(TZ—Tl) dTl de
= J/‘ J/ﬁ h(vl) h(vz) u(tl—il—vl) u(tz—gz—vz) RX{(tz—vz)-(tl—Vl)]dVldv2

13



2 £-¢q
.’; h(vl) h(vz) RX(Vl - v2) dv1 dv2

when tl = t2 = t. The response ozz(t) for the rectangular input is

identical to that for the step imput prior to t = t - For t>t0 it is

easily shown that

2
g, t) = Rz(t,t)

% * *
= Rz (t,t) - ZRZ (t, t—to) + Rz (t—to, t—to).

The first and last terms are known from (a). The general solution for

%
R, (t—al, t~€2) is

E3
RZ (t_gls t—gz)

4
- r - 1 ) _£.) -D_(t-
= R (t-f,, t-E,) +3 n’; D [D_(t-£;) -D_(t-£,)]

1 4 4
+ 5 2 2 E_. En(t—gz) [Dm (t—El) - (t~€2)]

n=1 m 1

After replacing gl and Ez by 0 and ts respectively and cancelling

terms it is found that for t>t0,

14
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— 2
w* o2(t)= B [B(t) - B(e=t )1+ 3, C [C (t) - C_ (t-t)]

n=1
4 4 .
- nz=:1 ’mgl E_ E (t-t)) [Dm(t’) - D_(t-t )]
. s . =it
c. The Exponentiagl Function: f(t) = u(t)e
In this case, noting the similarity between the step input and
the decaying exponential, one can write
9 S —A(t—vl) )\(t—vz)
oz(t) = j j. h(vl) h(vz) e e Rx(vl—vz) dvl dv2
o Yo
But,
1 ~8(v +v,)
h(vl) h(v2) = ;2 e sin wv, sin wv, .
=2\t
Since e can be taken out of the integral,
=20t ot gt -(B-2) (v, +v,)
oz(t) = e 3 e 1 gin wv, sin wv, R (v,-v,) dv
z o Jo w2 d 1 2 x°1 "2

15

1

(4)

dvz.



The solution follows immediately from (a) where B is replaced

by B8-x.
Wt o2(t) = o2t A + B B(t) + : cC ¢ L5
- e t > L G (B) + 3, D D_(t)
n=1 n=1
where in this case
a = PBoAe , b = B—A-0
W )

16
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ITT. PARAMETER STUDY

For the purpose of this study key parameters were chosen which
combine the basic properties of the system and the excitation. They are
z, ofB, plu, wto/Zﬁ and A/B8. The first three correspond to the fraction
of critical damping in the system, the input to system bandwidth ratio, and
the input to system center frequency ratio reépectively. The last two
terms express the cut-off time of the rectangular modulating function in
number of natural peridds of system oscillation, and the ratio of input

to system decay rates in the case of the exponential modulating function.

The ranges for these parameters were chosen so as to bracket most
cases of interest while at the same time providing an indication of trends
in the response characteristics as a function of parameter wvariation.

Thus three parameter matrices were created, one for each of the modulating
functions. All possible combinations of these choices were considered.
The rms response was computed and plotted for each case. These plots are

presented in the appendix.

1. Parameter Matrices

The Step Function

Both light and heavy system damping were considered. Narrow,
intermediate and broad-band excitation were considered as well as frequency

ratios of less than, equal to and greater than one.

17



10

1]
*
o
=

when ¢

100

/B =

[
|

1 when

10

plo = 1

This matrix contains a total of 18 cases,

The Rectangular Function

The same choices for z, of/B and p/w were retained for five values of
cut-off time. The first four illustrate the dependence of residual response

on cut-off time within a particular fundamental response period. A period

18



early in the forced response was chosen simply to demonstrate the worst case
effects. After a sufficiently long time the residual response becomes
independent of cut-off time., The fifth cut-off time was chosen such that
.the response is stationary prior to cut-off. The parameter wt0/2w was

therefore assigned the values

1.25

1.5

1.75

2.0

100 when ¢
10 when ¢

wto/2ﬂ =

01

il
"

This matrix contains a total of 90 cases.,

The Exponential Function

Again keeping the same choices for 7, o/f and p/w, two values were

considered for A/B.

1l
(o)
four

1 % when ¢
10

.1 % when

A/B =

I
-

These correspond to decaying exponentials which drop from 1.0 to less than

.05 in 50 and 5 response periods, respectively. This matrix contains a

total of 36 cases.

19



The plots from these cases were used to infer trends in the behavior
of transient. response, Additional cases were then considered to confirm
and clarify these trends. The results of the parameter study are discussed

in the following section.

2. Discussion of Results

Either one of two normalizing factors have been used in plotting. They
are E%, the rms value ofig(t), and E;, the asymptotic rms vélue of Ekt) due
to a step dinput of:g(f). The former was used for all cases in the basic
parameter study and therefore applies consistently throughout the appendix.
The latter is used in this secfion to help distinguish between the
stationary and nonstationary response characteristies. By making the
stationary response always unity, emphasis is placed on the transient

response characteristics.

The Step Function

Figures 1, 2 and 3 typify the response of a mechanical oscillator to
step inputs of the stationary process under consideration. The rms response
is, of course, non-negative at all times. Its time history begins at the
origin and approaches a constant value asymptotically. This value must be
the stationary rms response to the stationary part of the inmput and is in

agreement with the results obtained by evaluating the integral

o =f ]H(m)l2 5 _(2) df

20
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commonly used to determine stationary response. The single bar notation
0 is used to denote a constant or stationary value. It is noted in passing
that these levels are affected by the input parameters as expected. That is,
the area under the product of the two functions [H(iﬂ)lz and SX(Q) (examples
of which are sketched in Figure 4) increases as p/w -+ 1. It increases (up
to a point) as @ increases for p/w # 1, and decreases as a increases for
o .
p/w =1, Sinced{ SX(Q)dQ = 1, the asymptotic value depends on how that
o

unit area is distributed with respect to the frequency response function of
the system. |

One of the most outstanding features of these plots is that for narrow-
band excitation at a frequency different from system resonance the transient
rms response overshoots its asymptotic value. The amount of overshoot can
be quite large as evidenced by Figure 3, where for ¢ = .1, p/w = 2 and
a/B = .1, the transient response exceeds the stationary by a factor of 2.
The practical significance of this feature depends on the practical
significance of the input parameters, particularly on the bandwidth of the
input. It is certainly conceivable that such a narrow-band excitation
could appear, for example, on the bed of a truck driving over a washboard
road. The resonant frequency of a properly isolated payload would be well
below the expected frequency of that environment. Consequently, transient
displacements might easily exceed those of steady state. Furthermore,
these transients are usually of short duration lasting for perhaps only a
few periods of payload response so that stationarity is never reached.

Decreasing system damping tends to increase system response. The

asymptotic value goes up, the amplitudes of the transient oscillatioms
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increase and they decay less rapidly. These characteristics are shown in
Figure 5.

Variations of the input parameters d and p not only affect the
asymptotic response but the initial transients as well. Generally speaking,
an increase in o causes stationarity to be reached more quickly as shown
in Figure 6 where 5; is used as the normalizing factor. Mathematically,

this is explained by the presence of the decay term e_(a+8)t

as & multiplier.
in Equation (2), This fact is of practical importance when the duration of
the input is limited as in the case of a rectangular or an exponential
modulating function for example. For then, peak rms response may be
affected by the rate of transient decay.

Variations of the parameter p cause another interesting effect. In
Figure 2 it is seen that when p/w = 1 the only oscillatory transient has a
frequency of 2w and that transient overshoot mever occurs even for very
narrow-band excitation. It can be seen in Equation (2) that in general
three frequency components are present: 2w, w - p and w + p. For
example, all three can be seen in Figure 7. As p/w > 1, w - p becomes

small which tends to set up a beating effect as shown in Figure 8. When

p/w = 1 this frequency becomes zero so that the oscillation disappears.

The Rectangular Function

The most important conclusion regarding the response of an oscillator
to a rectangular modulation of a stationary process is that the residual
response may exceed the forced response, even when the forced response

exceeds its asymptotic level. This feature is evidenced in Figure 9 and
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seems to occur only for narrow-band excitation when p/w > 1, It is not
surprising if one considers the residual response to a sinusoidal input
suddenly removed. The residual response depends on the energy stored in the
system at the time the input is turned off. This energy is the sum of the

kinetic and the strain energies T + U. If steady state is reached prior to

cut-off, then for small damping Z X PZ .
2
—_ ;L. '2 N.]_" R 2
Tmax = am Zmaxnu 2 k w2 zmax ?
and
U = l-k z2 .
max 2 max

For p/w > 1, Tmax > Umax' Then it is possible for T + U > UmaX at the
time of cut-off in which case the residual displacement response will be
greater than the forced response.

In general, if t0 occurs prior to reaching stationarity, the residual
response depends upon the time within a particular fundamental period at
which cut-off occurs as well as on the total number of periods of forced
response. Otherwise it is completely independent of cut-—-off time. It may
still eiceed the stationary level, however.

Because of the initial and final high level transients which a system

may experience when subjected to a rectangular burst of stationary, narrow-

band random, this modulating function is obviously inappropriate for

-

i
practical use unless such an environment actually exists for the item
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being tested. This example illustrates the importance of using the proper
modulating function rather than one which only simulates duration.

The foregoing conclusions may be of practical importance in another
physical situation. Analog power spectral density analyzers are often used
to analyze transient data. These devices are basically simple systems having
tuneable bandwidths. Some transient data may excite the analyzer in the
manner previously described. Depending on the holding circuit used, it is
conceivable that during periods of transient behavior erroneous conclusions

could be drawn from the data.

The Expornential Function

The rms response to an exponentially modulated input demonstrates
some of the more practical aspects of the behavior observed from the step
modulation. In general, it can be said that a sharply decaying modulating
function tends to eliminate those components of the rms response associated
with the instantaneous input after a short time, leaving only a residual
type response similar to that observed after cut-off for the rectangular
modulating function. This can be seen in Figure 10. On the other hand,
the rms response to a slowly decaying modulating function follows the
pattern of local stationarity [7] after the initial transients have damped
out, That is, it tends to follow the stationary level associated with the
instantaneous level of the modulating function as in Figure 11.

It was earlier pointed out that increasing the input bandwidth
parameter o could result in higher peak response for an attenuated input

if stationary response is held constant. Three response histories for
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different values of 4 are plotted in Figure 12 where each is normalized
to its asymptotic level. These can be compared with Figure 6.

The frequency parameter p/w was varied in the neighborhood of
p/w = 1 to demonstrate the effect of a limited duration input on peak rms
response. It can be seen in Figure 13 that as p/w =+ 1 the first peak of the
rms response moves to the right and consequently becomes attenuated to a
higher degree by the exponential modulating function. These plots can be
compared with those in Figure 8.

A practical application of this analysis is to consider the response
of a small component to pyrotechnic shock induced transients. These
transients may have a frequency distribution centered at 1500 cps with a
bandwidth of 1000 cps and have the approximate shape of a decaying
exponential of 50 milliseconds duration. If the component has a resonant
frequency of 100 cps and 5% damping, its response to the simulated shock
environment is that shown in Figure 14. In this case the maximum transient
response is about 57% of the stationary level. Lower system damping would

reduce this percentage even further.
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IV. SUPERPOSITION
It was suggested earlier that since a function f(t) can be approximated
by a sum of step functions, that the fms regponse -tota stationary input
modulated by £(t) can be approximated by summing a number of terms

* :
R, (t-z,, t—gj) similar to that given by Equation (3).
i :

To this end f(t) is replaced by
N
£(t) =~ gl a u(t-g,)

Then according to Equatiom (1)

czz(t) = [m [m h(t—rl) h(t—r?_)

N N
” Z%- ;g% a; aj u(Tl-gi) u(rz—gj) RX(TZ—Tl) dTl dr,.

=

If the order of integration and summation is interchanged then

N N o0 o0
Gzz(t) = Z Z a; a, j;w I_ -;h’(t_Tl) h(t-—’fz)

i=1 j=1 0
x o u(Ty=E) u(my=t) R (T,-T,) dT, dr,.

A suitable change of variables gives
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o} 2(t) EE a, a, St—EZ -[tﬂgl
z s &1 d h(vl) h(vz) RX (vl-vz) dv1 dv2

The number of computations ds cut in half by observing the symmetry of

%
RZ about the El 52 plane. In this case

N
2 _ 2 %
o, 7€) = > a" R~ (t-g,, t-g,)
i=1
N-1 N -
+ 22 3 a; a, R (t-g, t-£). (6)
i=1  j=i+l 3 J

A computer program was written to carry out these computations. To obtain
some indication of the accuracy of this approximation, the exponential modulating
function was approximated by the staircase function shown in Figure 15.

Examples of the results are shown in Figures 16 and 17. The circled dots are
points plotted from the approximate solution while the solid lines indicate

the exact solution.
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The agreement has been quite good for those cases considered where the
decaying exponential was replaced by an eight step staircase function. The
computation of 40 points took about 30 seconds on the TRW SDS-940 time

sharing computer. \\

This technique provides a very useful tool for estimating structural
response to nonstationary random environments since the modulating function
can be specified pointwise. These points correspond to the instantaneous

rms value of the excitation process and can be easily computed from digitized

data.
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V. CONCLUDING REMARKS

1. Sumary

This report has presented the results and conclusions of a parameter
study devised to illustrate the behavior of the transient rms
response .of a simple mechanical oscillator to a time-modulated stationary
process of arbitrary bandwidth and center frequency. Closed form solutions
were obtained for the step, the rectangular and the decaying exponential
modulating functions. A matrix of cases was established in parameters
describing system damping, bandwidth ratio, frequency ratio and modulating
function. These were varied independently and the resulting rms response
histories were computed and plotted. The results were discussed and
generalized.

From the step modulation it was learned that transient response levels
often exceed their asymptotic or stationary values for a narrow-band input
centered at a frequency different from system resonance. Increasing the
bandwidth of the input tends to eliminate these transients which are associated
with the input center frequency. When the input and system frequencies are
close together the response exhibits a beating phenoménon.

From the rectangular modulation it was learned that for narrow-band
input the residual response can exceed the forced response if the input
frequency is greater than that of the system. The residual response is
influenced by cut-off time only if that time occurs before stationarity is
reached.

The exponential modulating function has the effect of limiting the

residual type response associated with energy build-up in the system as well

46



as attenuating the forced response associated with the instantaneous strength
of the input; When rms response was normalized by its stationary level the
exponential modulating function attenuated more severely that response
associated with a narrower-band input and an input center frequency closer

to the resonant frequency of the system.

The results derived from the rectangular modulating function were used
to formulate an approximate solution for the response to an arbitrarily
modulated stationary input. When the e%ponential function was replaced by
an eight step staircase function, agreement between the approximate and
exact solutions was within a few percent for the cases compared.

These results provide an analytical capability for assessing the
potential value of a time-modulated random vibration test for specific
applications. The parameters chosen to describe the environment are readily
observable and permit a quick evaluation of the severity of the environment
for the system concerned. Practical examples have been suggested in which
structural response to a nonstationary environment can differ by as much
as a factor of 2 in either direction from the stationary response resulting

from the application of stationary excitation at the same level.

2. Recommendations for Future Work

On the basis of this report, several important topics are recommended
for further investigation. They outline the remaining steps leading to the

implementation of this method for laboratory testing.
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® Demonstrate the validity of the proposed simulation for
specific dynamic environments of interest, such as those
measured within spacecraft, aircraft, ground vehicles and
shock loaded ground structures.

® Investigate the factors relating to test repeatibility as a

. definitive basis for test specification. A test is--concelved
to embody a specific number of simulated transients, each random
in nature. A proper test would not only simulate the appearance
of each transient but the number of them expected in the service
life of the test item. For testing purposes, a constraint is
placed on the selection of that number. It must be sufficiently
large so that repeating the test will yield statistically
equivalent results.

® Demonstrate the ability of existing laboratory equipment to
provide these excitations.
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APPENDIX: Plots from the Parameter Study

The plots from the basic parameter study for the three modulating
functions are presented in this appendix. A summary of cases is

contained in the following three tables.

TABLE A T. The Step Function

f(t) = u(t)
Figure System Frequency Bandwidth
No. damping ratio ratio
g p/w a/B
Al 0.01 0.5 1, 10, 100
A2 1
A3 l 2 l l l
A4 0.1 0.5 0.1, 1, 10
A5 1
A6 l 2 lll
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TABLE A II.

The Rectangular Function

f(t) = u(t) - u(t—to)

Figure System Frequency Bandwidth Cut-off

No. damping ratio ratio time

z p/w o/B wto/2ﬂ

A 7 0.01 0.5° 1, 10, 100 1.25
A 8 l 1.5
A 9 1.75
A 10 2
A1l 100
A 12 1 1.25
A 13 1.5
A 14 1.75
A 15 2
A 16 J v B | 100
A 17 2 1.25
A 18 1.5
A 19 1.75
A 20 2
A 21 ] Y yor ¢ 100
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TABLE A TII.

The Rectangular Function (Cont'd)

f(t) = u(t) - u(t—to)

Figure System Frequency Bandwidth Cut-off

No. damping ratio ratio time

4 p/w afB wto/Zn

A 22 0.1 0.5 0.1, 1, 10 1.25
A 23 i 1.5
A 24 1.75
A 25 2
A 26 Y \ / 10
A 27 1 1.25
A 28 1.5
A 29 1.75
A 30 2
A 31 / / | N/ 10
A 32 2 1.25
A 33 1.5
A 34 1.75
A 35 2

A 36 Y Y A \J 10




TABLE A III.

The Exponential Function

f(t) = u(t)e_}\t
Figure System Frequency Bandwidth Decay
No. damping ratio ratio. ratio
4 p/w o/B A8
A 37 0.01 0.5 1, 10, 100 1
A 38 1
A 39 l 2 'l" l l l
A 40 0.5 10
A 41 1 l
A 42 2 '
A 43 0.1 0.5 0.1, 1, 10 0.1
A 44 1
A 45 l 2 1 l l l
A 46 0.5 1
A 47 1 l
A 48 2 . :
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